Section 4 - City of St. Anthony
Acknowledgments

Special recognition goes to members of the Fremont County Transportation Advisory Committee (in green) and others who represented and supported the City of St. Anthony in the transportation planning effort.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Beck</td>
<td>Mayor, City of St. Anthony</td>
</tr>
<tr>
<td>Taci Stoddard</td>
<td>City Clerk</td>
</tr>
<tr>
<td>Cathy Koon</td>
<td>Council Member</td>
</tr>
<tr>
<td>Woody Andersen</td>
<td>Public Works Superintendent</td>
</tr>
<tr>
<td>April Calonge</td>
<td>Deputy City Clerk</td>
</tr>
<tr>
<td>Garth Rose</td>
<td>Council President</td>
</tr>
<tr>
<td>Darby Merrill</td>
<td>Council Member</td>
</tr>
<tr>
<td>Matt Blanchard</td>
<td>Council Member</td>
</tr>
<tr>
<td>Dee Rausch</td>
<td>Council Member</td>
</tr>
<tr>
<td>Shawn Fransen</td>
<td>Council Member</td>
</tr>
<tr>
<td>Penny Stanford</td>
<td>City Attorney</td>
</tr>
<tr>
<td>Heather Parker</td>
<td>Deputy Treasurer</td>
</tr>
<tr>
<td>Bob Bauer</td>
<td>Streets Department</td>
</tr>
<tr>
<td>J.D. Henry</td>
<td>Sewer Superintendent</td>
</tr>
<tr>
<td>Scott Butigan</td>
<td>City Mechanic</td>
</tr>
<tr>
<td>Kirk Nelson</td>
<td>Water Superintendent</td>
</tr>
<tr>
<td>Chris Hill</td>
<td>Chairman, Planning & Zoning Board</td>
</tr>
<tr>
<td>Jared Wight</td>
<td>Vice-Chairman, Planning & Zoning Board</td>
</tr>
<tr>
<td>David Atkinson</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>Cyril Burt</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>Inella Douglas</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>George Wieg</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>Jim Hobbs</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>Evan Tibbitts</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>Ray Voss</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>Wendel Greenhalgh</td>
<td>Planning & Zoning Board</td>
</tr>
<tr>
<td>Consultants</td>
<td>J-U-B ENGINEERS, Inc. Gateway Mapping</td>
</tr>
<tr>
<td></td>
<td>The Langdon Group</td>
</tr>
</tbody>
</table>
Contents

City of St. Anthony Project Overview
- Introduction ... 4-5
- History .. 4-5
- Planned Transportation Projects ... 4-7
- Demographics and Land-use Trends ... 4-8
- Goals and Policies ... 4-10

City of St. Anthony Transportation System Network
- Roadway Network ... 4-11
- Functional Classification System ... 4-11
- Traffic Volumes and Patterns ... 4-15
- Operational Measures ... 4-18
- Bridges .. 4-23
- Drainage ... 4-23
- Access Management Policies ... 4-23
- Design Standards ... 4-26
- Asset Management ... 4-35
- Other Modes and Means of Transportation ... 4-39
- Project Alternative Analysis .. 4-42

City of St. Anthony Capital Improvement Plan
- Introduction ... 4-51
- Capital Improvement Plan Projects .. 4-52

Fremont County Funding Sources
- State / Local Funding .. 4-58
- Local Federal-aid Incentive Program .. 4-58
- Congestion Mitigation and Air Quality (CMAQ) Improvement Program 4-59
- Enhancement Program ... 4-59
- Public Lands Highways Programs ... 4-60
- Highway Safety Program ... 4-60
- Scenic Byways Program ... 4-60
Figures

Figure 4-1. Standard Cul-de-sac Layout .. 4-27
Figure 4-2. Typical Roadway Section—41 Foot Roadway Section 4-29
Figure 4-3. Typical Roadway Section—52 Foot Roadway Section 4-30
Figure 4-4. Typical Roadway Section—64 Foot Roadway Section 4-31
Figure 4-5. Typical Roadway Section—With Drainage Swells .. 4-32
Figure 4-6. Remaining Service Life Distribution for Paved Roads 4-36
Figure 4-7. Completed Fremont County Pair Wise Chart ... 4-43
Figure 4-8. Fremont County Project Ranking Criteria ... 4-45
Figure 4-9. Prioritized List of Projects ... 4-46

Exhibits

Exhibit 4-1. St. Anthony ... 4-6
Exhibit 4-2. Master Transportation Plan ... 4-9
Exhibit 4-3. Functional Classification ... 4-14
Exhibit 4-4. Annual Average Daily Traffic (AADT) and Levels of Service (LOS)—Existing (2005) ... 4-19
Exhibit 4-5. Annual Average Daily Traffic (AADT) and Levels of Service (LOS)—Future (2005) ... 4-20
Exhibit 4-6. Accident Data (Wet and Dry Conditions) ... 4-22
Exhibit 4-7. Sidewalk Map .. 4-38
Exhibit 4-8. Transportation Modes—RR, Bus, Trails, Landing Areas, Byways—Existing System ... 4-41
Exhibit 4-9. Capital Improvement Projects (CIP) ... 4-57

Tables

Table 4-1. Historic Population (1970-2004) ... 4-8
Table 4-2. Community Age Groups (1980–2000) .. 4-8
Table 4-3. Housing (1980–2000) ... 4-8
Table 4-4. Descriptions for Rural Roadway Levels of Service .. 4-16
Table 4-5. Current (2004) and Projected (2025) Levels of Service for Major Collectors—St. Anthony ... 4-17
Table 4-6. Level of Service at Stop-controlled Intersections .. 4-17
Table 4-7. Current Levels of Service at Select St. Anthony Intersections 4-18
Table 4-8. St. Anthony Accidents (2000–2004) ... 4-21
Table 4-9. Summary of ITD’s Access Spacing Requirements ... 4-25
Table 4-10. Right-of-way Standard Widths ... 4-26
Table 4-11. Roadway Design Standards .. 4-28
Table 4-12. Non-signalized Access Spacing for Driveways ... 4-33
Table 4-13. Facility Data about the Stanford Field Airport ... 4-40
City of St. Anthony
Project Overview

Introduction

By virtue of its designation as the county seat and largest population center in the county, St. Anthony has traditionally been the business hub of Fremont County. With the recent announced expansion of BYU-Idaho, St. Anthony is strategically located to experience new commercial and residential development. Transportation issues from US 20 interchange improvements to the celebrated Henry’s Fork Greenway are taking front stage. However, limited city budgets are affecting the critical maintenance projects of local streets. The transportation plan will prioritize the many competing and worthy city improvements.

History

Fur trappers came to the St. Anthony area in the early 1800s. Nearby Fort Henry became the site of the first American fur post west of the Rocky Mountains. St. Anthony is bisected by Henry’s Fork of the Snake River, and an early settler named the city in memory of the Falls of St. Anthony on the Mississippi River at Minneapolis. Laid out in an efficient grid pattern, the community is bisected by US 20 and the Henry’s Fork River. Old Yellowstone Highway is also known as Bridge Street as it takes a sweeping turn through the Central Business District (Exhibit 4-1). St. Anthony was named the county seat when Fremont County incorporated in 1893.
Exhibit 4-1. City of St. Anthony
Planned Transportation Projects

Exhibit 4-2 illustrates transportation projects that were under consideration by the city in October 2005. These proposed projects are:

✔ Sidewalk extension on west side of Bridge Street to new high school
✔ New sidewalk on north side of Radio Road/North Yellowstone
✔ 8- to 10-foot wide pathway/sidewalk from 6th S to Salem Canal Bridge on Old Yellowstone Highway
✔ Street maintenance on West 4th north from Bridge Street to city limits
✔ Existing and future Henry’s Fork Greenway path from Shell Station west to Parker Road
✔ West Main Street overlay from 3rd W to 12th W
✔ Extend Bridge Street to north
✔ Airport improvements (STIP), Key Nos. F609 and F610
Demographics and Land Use Trends

St. Anthony Population and Demographics

The following tables provide population and demographics information about St. Anthony.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Anthony</td>
<td>2,877</td>
<td>3,212</td>
<td>3,010</td>
<td>3,414</td>
</tr>
<tr>
<td>Fremont County</td>
<td>8,710</td>
<td>10,813</td>
<td>10,937</td>
<td>12,263</td>
</tr>
</tbody>
</table>

Source: Idaho Department of Commerce; Idaho Economics and Labor.

Table 4-2. Community Age Groups (1980–2000)

<table>
<thead>
<tr>
<th>Area</th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 5 years</td>
<td>434</td>
<td>259</td>
<td>329</td>
</tr>
<tr>
<td>5 to 19 years</td>
<td>895</td>
<td>917</td>
<td>897</td>
</tr>
<tr>
<td>20 to 44 years</td>
<td>1,014</td>
<td>1,014</td>
<td>1,118</td>
</tr>
<tr>
<td>45 to 64 years</td>
<td>513</td>
<td>483</td>
<td>618</td>
</tr>
<tr>
<td>65+ years</td>
<td>356</td>
<td>337</td>
<td>380</td>
</tr>
<tr>
<td>Median age</td>
<td>25.7</td>
<td>27.9</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Source: Idaho Department of Commerce; Idaho Economics and Labor.

Table 4-3. Housing (1980–2000)

<table>
<thead>
<tr>
<th>Item</th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total housing units</td>
<td>1,211,463</td>
<td>1,135</td>
<td>1,218</td>
</tr>
<tr>
<td>Median value of owner-occupied housing</td>
<td>36,000</td>
<td>42,300</td>
<td>69,300</td>
</tr>
<tr>
<td>Median rent</td>
<td>144</td>
<td>183</td>
<td>372</td>
</tr>
<tr>
<td>County</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total housing units</td>
<td>5,376</td>
<td>5,961</td>
<td>6,890</td>
</tr>
<tr>
<td>Median value of owner-occupied housing</td>
<td>38,200</td>
<td>46,200</td>
<td>78,300</td>
</tr>
</tbody>
</table>

Source: Idaho Department of Commerce.
Exhibit 4-2 – Planned Transportation Projects
Goals and Policies

Goal: Ensure that all development within the St. Anthony Area of Impact is in compliance with the city’s ordinances and plans.

Policy: Annually review St. Anthony’s and Fremont County’s Area of Impact agreement and map boundaries ordinances. Initiate an update with the County when necessary.

Policy: As part of the St. Anthony’s Area of Impact ordinances, request notification and review opportunities for any development being considered by the County within the St. Anthony Area of Impact.

Goal: Continue the city’s historic grid network.

Policy: Encourage the City’s 350 ft. block grid in future developments wherever feasible to do so.

Goal: Plan for transportation emergencies and the health, safety and welfare of St. Anthony residents and businesses.

Policy: Work with local, state and federal agencies to plan for an additional bridge or emergency egress across the Henry’s Fork of the Snake River in or near the City Limits.

The City of St. Anthony supports consideration of a regional airport for Madison and Fremont County.

St. Anthony desires to promote regional connectivity of bike and pedestrian pathways. This includes developing connections between the St. Anthony Greenway and pathways in and around Ashton, Island Park, Sugar City and Rexburg.
City of St. Anthony
Transportation System Network

Roadway Network

The city of St. Anthony is bisected by the Henry’s Fork of the Snake River. The northern and southern sections of the city are connected by a single bridge. Nearly all of the city streets follow a north-south, east-west grid pattern. Most of the city streets serve residential areas, with some commercial buildings along Main Street, Bridge Street and the north portion of town. In addition, the streets serve some industrial use along Old Yellowstone Highway railroad.

In 2005, the city had the following roadway inventory:

- 24.4 total miles of road
- 18.4 miles of paved road
- Six miles of gravel road
- Five bridges

In addition to the road network, the city maintains about 750 road signs. There is currently one traffic signal (at Main and Bridge St.) and there are two at-grade railroad crossings within the city. Most of the streets in the north portion of the city (north of the river) have sidewalks. About half of the streets in the southern portion of town have sidewalks.

Functional Classification System

Description

A roadway network is typically comprised of a hierarchy of roadways that are defined by their respective functional classification. Generally, roadways serve two primary functions—access and mobility—and the degree to which the roadway serves these functions define its functional classification.

St. Anthony presently has a functional classification map that is maintained and published by ITD. The functional classification map is updated and republished every five years. However, modifications to the map can be requested at any time by highway jurisdictions depending on land use changes and/or traffic use fluctuations on the roadways.

Functional classification maps are an important part of the highway system for state and federal funding requests, as generally only roads rated major collector or above are eligible for these funds.

Nationally, road networks are constituted as follows:

- Principal arterial system—2 percent to 4 percent
- Minor arterial system—7 percent to 10 percent
Collector roads—20 percent to 25 percent
Local roads—65 percent to 75 percent

Roadway Functional Types

The road map in Exhibit 4-3 shows the existing and proposed functional classifications for roads in Fremont County. A description of these classifications follows.

Principal Arterials and Minor Arterials

Principal arterials carry longer-distance major traffic flows between population centers and important activity locations, including statewide or interstate travel. Minor arterials also provide direct transportation links between cities and major traffic generators.

US 20 is a principal arterial that passes through St. Anthony. This is the main north-south route through Fremont County and leads into Montana. US 20 is maintained by the ITD.

ITD generally requires a minimum right-of-way width of 120 feet for principal arterials and 80 to 100 feet for minor arterials.

The design speed for US 20 near St. Anthony is 70 mph. The posted speed is 65 mph. Design speeds are typically 5 mph higher than posted speeds.

Collectors

Collectors link local streets with the arterial street system and provide travel corridors within a city.

Travel speeds and volumes are generally more moderate than arterials and the travel distances shorter.

Collector design speeds are typically higher than local street speeds, up to 35 mph.

Examples of collectors in St. Anthony:

- West 4th N and East 4th N
- East 6th S
- Old Yellowstone Highway
- Bridge Street
- Radio Road

Bridge Street and Radio Road are also designated as a business loop for US 20.

The City of St. Anthony street standards do not have a separate designation for right-of-way width for collector roads.

Local Roads

The primary function of local roads is to provide access to adjacent residential and business land uses.
✓ Local roads are generally low-speed, two-lane roads that carry relatively low traffic volumes.

✓ The local road standards, listed in the City of St. Anthony Design Requirements and Criteria, indicate a minimum right-of-way width of 52 feet for any city street, “except by special permit for purely local drives.”

✓ Design speeds for local roads range from 20 to 35 mph.

Recommended Changes to Functional Classification

1. Include Main Street as a collector on the functional classification map. Main Street is the primary entrance into St. Anthony from the rural areas SW of the city. Main Street also collects much of the local traffic from the residential areas to Bridge St. and the commercial areas of the city.

2. Designate 7th S. as a minor collector. 7th S is the primary east-west route in the south portion of St. Anthony and connects to the county road 2300 E. 2300 E could be designated as a collector in the future if growth occurs in the undeveloped area between US 20 and the Old Yellowstone Hwy.

3. 12th W should be considered as a collector. It serves as N-S connection between 600 N and Main Street and commercial destinations along Bridge St. Similar to Main St., 12th W is the primary access to St. Anthony from the Parker area and other areas SW of St. Anthony.
Exhibit 4-3. Functional Classification for Existing and Proposed Roads
Traffic Volumes and Patterns

Annual Average Daily Traffic (AADT) volumes provided by the Road & Bridge Department and ITD are shown in Exhibit 4-4 and Exhibit 4-5. Volume data are collected periodically for various city and county roads. These data provide a history of roadway use, or “level of service.” Table 4-4 describes the various levels of use that correlate to the LOS grade determinations. Major collector road segments were evaluated for current and future levels of service, shown in Table 4-5.

Operational Measures

Roadway Levels of Service (LOS)

Traffic flow is typically measured by LOS (Table 4-4). LOS is an assessment of traffic-flow characteristics and mobility. Each segment of a roadway can be rated from A to F to reflect traffic conditions at the given demand or service volume. A level of service rating of A means essentially uninterrupted flow, while a rating of F indicates a breakdown of traffic flow with excessive delay. In urbanized roadways, the LOS is measured by the average travel speed for the segment of roadway. Average travel speed reflects driver mobility and accounts for delays created by traffic control devices, turning vehicles and parking maneuvers.

<table>
<thead>
<tr>
<th>LOS</th>
<th>Description</th>
<th>Average Travel Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Free flow. Vehicles are completely unimpeled in their ability to maneuver in the traffic stream.</td>
<td>>25</td>
</tr>
<tr>
<td>B</td>
<td>Reasonably unimpeded flow. The ability to maneuver in the traffic stream is only slightly restricted.</td>
<td>>19–25</td>
</tr>
<tr>
<td>C</td>
<td>Stable traffic flow. The ability to maneuver in the traffic stream and change lanes mid-block may be more restricted than LOS B. Congestion is primarily due to turning traffic.</td>
<td>>13–19</td>
</tr>
<tr>
<td>D</td>
<td>Approaching unstable traffic flow. Small increase in flow may cause substantial increases in delay.</td>
<td>>9–13</td>
</tr>
<tr>
<td>E</td>
<td>Unstable flow. Significant delays and travel speeds less than 1/3 of free flow speed.</td>
<td>>7-9</td>
</tr>
<tr>
<td>F</td>
<td>Forced or heavily congested flow. Extremely low speeds approaching 1/4 free flow speed.</td>
<td>≤7</td>
</tr>
</tbody>
</table>

Table 3-7. Descriptions for Urban Street Class IV Level of Service

The following are optimal conditions for an urban highway:

- Capacity of 1,800 passenger cars per hour per lane.
- Lane width of 12 feet or greater
- Clear shoulders, 6 feet or greater
- Dedicated turn lanes
- Only cars (no trucks) in the traffic stream
- A 50/50 directional split of traffic
- No impediments to through traffic
- Level terrain

Typically, levels of service of C or D are acceptable on urban roadways.

The only roadway segment that was determined to have a level of service of C or less was Bridge Street (Business 20) at the US-20 interchange (Table 4.5). The principal roadways within the urban areas of St. Anthony operate at an LOS B.

Bridge Street is the one road in St. Anthony with potential operational issues. Bridge Street was analyzed for LOS as one segment between Main and 4th N. due to the short segments between intersections. The level of service is estimated as “C” for existing conditions and in 2025 but these calculations do not account for parking maneuvers or unbalanced lane usage. Bridge Street requires closer examination to see if changes in lane configuration or traffic controls are appropriate.

Projected traffic flow on E 6th S falls in the “C” range. This is an acceptable LOS for most cities, but if increased development occurs on the east side of town, the LOS for E 6th S could fall to “D” or less. Capacity on these roadways should be reanalyzed in the next 3 to 5 years to identify any changes in the projected rate of growth.
Table 4.5. Current (2004) and Projected (2025) Levels of Service for Major Collectors—St. Anthony

<table>
<thead>
<tr>
<th>Name</th>
<th>Begin Road/Location</th>
<th>End Road/Location</th>
<th>Average Annual Daily Traffic 2005</th>
<th>Average Annual Daily Traffic 2025</th>
<th>Avg. Travel Speed (mph) 2005</th>
<th>Avg. Travel Speed (mph) 2025</th>
<th>LOS 2005</th>
<th>LOS 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Street</td>
<td>US 20</td>
<td>W 1st S</td>
<td>9800</td>
<td>15386</td>
<td>16.3</td>
<td>16.0</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Bridge Street</td>
<td>Main Street</td>
<td>N 1st</td>
<td>6300</td>
<td>9891</td>
<td>17.9</td>
<td>17.9</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Bridge Street</td>
<td>N 1st</td>
<td>N 2nd</td>
<td>5000</td>
<td>7850</td>
<td>17.9</td>
<td>17.9</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Bridge Street</td>
<td>N 2nd</td>
<td>N 4th</td>
<td>4800</td>
<td>7536</td>
<td>17.9</td>
<td>17.9</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>S 3rd E</td>
<td>City limit</td>
<td>E 6th S</td>
<td>2100</td>
<td>3297</td>
<td>19.1</td>
<td>19.0</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>E 6th S</td>
<td>S 3rd E</td>
<td>Bridge Street</td>
<td>2700</td>
<td>4239</td>
<td>19.1</td>
<td>18.8</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>W 4th N</td>
<td>City limit</td>
<td>Bridge Street</td>
<td>2800</td>
<td>4396</td>
<td>24.9</td>
<td>24.9</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Yellowstone Highway</td>
<td>400 N</td>
<td>US 20</td>
<td>1900</td>
<td>2983</td>
<td>30.0</td>
<td>30.0</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Source: J-U-B ENGINEERS, Inc.

Intersection Levels of Service

Traffic flow is typically measured by level of service at intersections. Two-way stop-controlled and all-way stop-controlled intersections measure level of service by the stopped delay at the intersection (Table 4-6).

Table 4-6. Level of Service at Stop-controlled Intersections

<table>
<thead>
<tr>
<th>LOS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Less than 10 second delay</td>
</tr>
<tr>
<td>B</td>
<td>More than 10 and less than 15 seconds of delay</td>
</tr>
<tr>
<td>C</td>
<td>More than 15, but less than 25 seconds of delay</td>
</tr>
<tr>
<td>D</td>
<td>More than 25 seconds and less than 35 seconds of delay</td>
</tr>
<tr>
<td>E</td>
<td>More than 35 seconds, but less than 50 seconds of delay</td>
</tr>
<tr>
<td>F</td>
<td>More than 50 seconds of delay</td>
</tr>
</tbody>
</table>

At two-way stop-controlled intersections, drivers on the controlled approaches are required to select gaps in the major street flow before crossing the road or turning. The capacity of the controlled legs is based on the following factors:
✓ Distribution of gaps in the major street traffic stream
✓ Driver judgment in selecting a gap through which to execute the desired maneuver
✓ Follow-up time required by each driver in a queue

The LOS is based on reserved capacity instead of vehicle delay although the letter designations are approximately equivalent.

The selected intersections in St. Anthony are unsignalized and perform well from a capacity standpoint (Table 4-7).

Table 4-7. Current Levels of Service at select St. Anthony Intersections

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Northbound</th>
<th>Southbound</th>
<th>Eastbound</th>
<th>Westbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delay (Sec/Veh)</td>
<td>LOS</td>
<td>Delay (Sec/Veh)</td>
<td>LOS</td>
</tr>
<tr>
<td>4th N / Bridge Street</td>
<td>16.1</td>
<td>C</td>
<td>15.1</td>
<td>C</td>
</tr>
<tr>
<td>1st N / Bridge Street</td>
<td>14.0</td>
<td>B</td>
<td>14.3</td>
<td>B</td>
</tr>
<tr>
<td>12th W / Main Street</td>
<td>9.5</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 4-4. Annual Average Daily Traffic (AADT) and Levels of Service (LOS) – Existing (2005)
Exhibit 4-5. City of St. Anthony Annual Average Daily Traffic (AADT) and Levels of Service (LOS) – Future (2025)
Crash Locations—Road Segments and Intersections

Table 4-8 lists locations where more than two crashes occurred in St. Anthony. The bulk of the crashes occur in the downtown area, where there is a high percentage of turning traffic and higher parking turnover rates. The number of rear-end and parking maneuver crashes shown in the records indicates this. The Bridge Street/Main Street intersection is of special concern, because it has experienced nearly twice as many crashes as any other location in the city.

The intersections with a high number of crashes in St. Anthony include:

- Bridge Street at Main Street
- Bridge Street at 2nd N
- Bridge Street at 4th N
- Main Street at 1st W

<table>
<thead>
<tr>
<th>Location</th>
<th>Intersection or Segment</th>
<th>Accidents</th>
<th>Injuries</th>
<th>Fatalities</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st E</td>
<td>2nd N</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>Parking</td>
</tr>
<tr>
<td>1st N</td>
<td>1st W</td>
<td>2</td>
<td>1</td>
<td>–</td>
<td>Parking</td>
</tr>
<tr>
<td>1st N</td>
<td>East of bridge</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>Parking</td>
</tr>
<tr>
<td>1st N</td>
<td>West of bridge</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>Parking/alley</td>
</tr>
<tr>
<td>2nd N</td>
<td>3rd W</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>3rd S</td>
<td>Bridge Street</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>Alley</td>
</tr>
<tr>
<td>4th N</td>
<td>2nd E</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>4th N</td>
<td>6th W</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>Alley</td>
</tr>
<tr>
<td>4th N</td>
<td>7th W</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>4th N</td>
<td>Bridge Street</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>Rear-ends</td>
</tr>
<tr>
<td>6th S</td>
<td>Bridge Street</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Bridge Street</td>
<td>1st N</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Bridge Street</td>
<td>1st S</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Bridge Street</td>
<td>2nd N</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>3 rear-end accidents</td>
</tr>
<tr>
<td>Bridge Street</td>
<td>3rd N</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Bridge Street</td>
<td>4th N</td>
<td>9</td>
<td>6</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Bridge Street</td>
<td>Main Street</td>
<td>16</td>
<td>5</td>
<td>–</td>
<td>3 bike/pedestrian 7 rear-ends</td>
</tr>
<tr>
<td>Bridge Street</td>
<td>US 20</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>1 bike</td>
</tr>
<tr>
<td>Main Street</td>
<td>1st E</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Main Street</td>
<td>2nd W</td>
<td>8</td>
<td>1</td>
<td>–</td>
<td>6 parking</td>
</tr>
</tbody>
</table>

Source: ITD

Exhibit 4-6 graphically illustrates the St. Anthony crash data in wet and dry conditions, 2000-2004.
Exhibit 4-6. City of St. Anthony Crash Data (Wet and Dry Conditions)
Bridges

There are five state-inspected bridges in St. Anthony on the city-maintained street system - three over the Egin Canal (Bridge Nos. 32225, 32230, 32235) and two over the Salem-Union Canal (Bridge Nos. 32220 and 21055). The sufficiency numbers for these five bridges range from 67 to 96.4. (See the information for Fremont County bridges in Section 2, Table 2-16.)

There are seven bridges on US 20 Business Loop (Bridge St. and Yellowstone). The sufficiency ratings for these bridges range from 72.9 to 100, except for the truss bridge over the Henry’s Fork, one-and-a-half miles east of Bridge Street. That bridge has a sufficiency rating of 31.9.

Drainage

Drainage is an important part of road construction and maintenance. The following drainage issues are related to roadways:

- Drained base and subgrade to prevent reduced pavement section strength and failure
- Drainage parallel to the roadway to avoid localized flooding of the road surface
- Adequate cross-drainage to minimize the risk of roadway fill failure and prevent flooding of adjacent upstream lands
- Erosion protection to prevent loss of lateral support and degradation of water quality

Access Management Policies

Description

Roadways function for both mobility of the public and accessibility to adjacent properties. Both functions are essential, but roadways are designed with different emphasis on each function.

An arterial is designed to carry more traffic at higher speeds. Mobility is paramount, while the roadway’s access function is minimized. This emphasis necessitates a design for higher speeds and restriction of access along the arterial.

On the other hand, access is the primary function of local roads. A local road is more important for providing access than for providing mobility. Travel speeds are low and accesses are permitted.

Collectors provide the bridge between local roads and arterials. A collector road should allow controlled access under specific conditions. Speeds on collectors should be from 35 to 50 mph, depending on the surrounding land uses. A rural
collector road should be continuous between arterials, collectors, traffic generators and towns/cities to provide intracounty travel corridors.

Access Spacing

Access spacing within cities is highly dependent on functional classification. Dramatically different access spacing is recommended for local urban streets in comparison to urban collectors and arterials.

Local Streets

As in most cities, the majority of roads in St. Anthony are local roads, the purpose of which is to provide access to homes and businesses. Within cities, accesses can be numerous and closely spaced. Speeds must be lower to reduce potential conflicts with vehicles entering the roadway.

Access control on local city streets is typically handled by limiting the number of approaches to each property tract or business frontage and by limiting the width of driveways.

Another aspect of access control that should be addressed on local streets is defining how close a driveway may be to an intersection, particularly along commercial properties. Driveways too close to intersections can create unnecessary congestion, primarily when vehicles attempt to turn left into a business and periodically back traffic up through the adjacent intersection while waiting for a break in on-coming traffic.

Access control is an essential part of good land use and transportation planning. It can be implemented through two primary approaches on local road systems:

- Planning, zoning and subdivision processes
- An access or right-of-way permit system

Policies can be established in the zoning code to limit the number of accesses per parcel and define the distance from an intersection to the first driveway. An access permit system can provide a system for city review and approval before driveways become established by property owners or businesses.

Collectors and Arterials

ITD and the Local Highway Technical Assistance Council (LHTAC) have similar access policies for collector and arterial streets. **Table 4-9** summarizes ITD’s access spacing requirements for urban and rural collector and arterial streets. The LHTAC standard approach policy does the following:

- Encourages joint use approaches
- Provides a maximum of two approaches per property tract or business frontage
- Provides geometric requirements that include the following:
 - Sight distance
 - Minimum and maximum width
Table 4-9. Summary of ITD’s Access Spacing Requirements-Collectors & Arterials

<table>
<thead>
<tr>
<th>Access Type</th>
<th>Functional Classification</th>
<th>Type</th>
<th>Intersection Spacing</th>
<th>Approach Spacing</th>
<th>Signal Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Rural Minor and Major Collector</td>
<td>At-Grade</td>
<td>0.25 mile</td>
<td>300 feet</td>
<td>0.5 mile</td>
</tr>
<tr>
<td>II</td>
<td>Rural Minor Arterial</td>
<td>At-Grade</td>
<td>0.25 mile</td>
<td>500 feet</td>
<td>0.5 mile</td>
</tr>
<tr>
<td></td>
<td>Urban Collector and Minor Arterial</td>
<td>At-Grade</td>
<td>660 foot</td>
<td>150 feet</td>
<td>0.25 mile</td>
</tr>
<tr>
<td>III</td>
<td>Rural Principal Arterial</td>
<td>At-Grade/Interchange</td>
<td>0.5 mile</td>
<td>1,000 feet</td>
<td>0.5 mile</td>
</tr>
<tr>
<td></td>
<td>Urban Principal Arterial</td>
<td>At Grade/Interchange</td>
<td>0.25 mile</td>
<td>300 feet</td>
<td>0.5 mile</td>
</tr>
<tr>
<td>IV</td>
<td>Rural Principal Arterial (Multiple-Lane)</td>
<td>At Grade/Interchange</td>
<td>1 mile</td>
<td>N/A</td>
<td>0.25 mile</td>
</tr>
<tr>
<td></td>
<td>Urban Principal Arterial (Multiple-Lane)</td>
<td>At Grade/Interchange</td>
<td>1 mile</td>
<td>N/A</td>
<td>0.25 mile</td>
</tr>
<tr>
<td>V</td>
<td>Rural Interstate</td>
<td>Interchange</td>
<td>3 miles</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Urban Interstate</td>
<td>Interchange</td>
<td>1 mile</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Source: Idaho Transportation Department.

The information in Table 4-9 is provided as a guideline for determining appropriate access spacing for new development. It is understood that cities such as St. Anthony will have existing collector streets that have established approaches and intersections that are much closer than those indicated in the table.
Design Standards

The following text shows recommended roadway design standards for the City of St. Anthony. It is recommended that these standards be adopted into the existing city ordinances.

City of St. Anthony Design Standards

Purpose

The purpose of this document is to provide standards for the construction or reconstruction of roadways. These standards are for roadways in low to medium density residential and light commercial areas. A large-scale development study will be required for any development that generates sufficient traffic to necessitate additional construction requirements.

Large-Scale Development

Any requirement of this document may be altered as a result of a large-scale development study required by ordinance. Any alterations shall be at the discretion of the City of St. Anthony.

Right-of-Way

Roadway right-of-way shall be as required by the following Table 4-10.

Table 4-10. Right-of-way Standard Widths

<table>
<thead>
<tr>
<th>Type of Roadway</th>
<th>Minimum Width of Public Right-of-way (foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterials</td>
<td>80 - 100</td>
</tr>
<tr>
<td>Collectors</td>
<td>80</td>
</tr>
<tr>
<td>Local roads and streets</td>
<td>60 or 70</td>
</tr>
<tr>
<td>Subdivision streets*</td>
<td>60</td>
</tr>
</tbody>
</table>

* Subdivisions in city impact areas shall follow current right-of-way widths of the closest city.

Cul-de-sacs and Dead-end Streets

Cul-de-sacs are discouraged in the City of St. Anthony but may be allowed in circumstances wherein no other roadway configuration will allow access to land that is appropriate for development. Approval of cul-de-sacs will be at the discretion of city authorities. Cul-de-sacs shall have a minimum right-of-way of a 60-foot radius with additional right-of-way as needed to accommodate unusual cut and fill sections. Cul-de-sacs of a temporary nature may be allowed, providing each public right-of-way is shown on the plans or plat and approved by the city. All cul-de-sacs shall be paved whether temporary or permanent. Cul-de-sacs must be large enough that the anticipated size of school bus for the area can turn around in the cul-de-sac without backing up.
A standard cul-de-sac layout is shown in Figure 4-1.

Figure 4-1. Standard Cul-de-sac Layout

STANDARD CUL-DE-SAC LAYOUT
ST. ANTHONY, IDAHO

NOTE:
Adequate drainage of the surface and ditch line is required.
The maximum length of a road to end in a cul-de-sac shall be 350 feet or as directed by the city.

Dead-end streets shall be prohibited except where temporarily permitted by a subdivision phasing plan or to provide for future connections between developments. A temporary cul-de-sac shall be provided when a temporary dead-end street serves four or more lots. The temporary cul-de-sac shall be constructed in accordance with the standards detailed above.

Roadway Design Criteria

Table 4-11 is intended to show the minimum and maximum values for various parameters used in design criteria for the three classes of streets and highways to be designed. Modification by the city on an individual project by project basis may be accomplished by following appropriate procedures.

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Arterial</th>
<th>Collector</th>
<th>Local Roads and Streets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Grades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Maximum</td>
<td>6.0%</td>
<td>6.0^</td>
<td>10.0%</td>
</tr>
<tr>
<td>Horizontal Curvature</td>
<td>7^</td>
<td>11.5^</td>
<td>25^</td>
</tr>
<tr>
<td>Minimum Radius**</td>
<td>510 - 1330 foot</td>
<td>510 – 1040 foot</td>
<td>198 -510 foot</td>
</tr>
<tr>
<td>Design Speed</td>
<td>35 – 50 mph</td>
<td>35 – 45 mph</td>
<td>25 – 35 mph</td>
</tr>
<tr>
<td>Angles of Intersection</td>
<td>80 - 90^</td>
<td>80 - 90^</td>
<td>70 - 90^</td>
</tr>
</tbody>
</table>
| Grade at Intersection | 3% over a minimum of 50 foot | First 10 foot of intersecting road must be at -3%

* Roadways constructed with curb and gutter may have a minimum grade of 0.35 percent
** Radius measured to centerline of roadway. Minimum radius shown is for conditions without super-elevation and for urban conditions. Lower value relates to lower speed in given range. Higher value relates to higher speed in given range.

Roadways shall be constructed with applicable characteristics shown in Figures 4-2 through 4-5. A geotechnical report prepared by a licensed engineer indicating an appropriate pavement section design may be required for collector streets or other roadways that may receive higher numbers of vehicle traffic than other local streets, and for roadways that are expected to carry truck traffic on a regular basis.
Figure 4-2. 41' Typical Roadway Section - Local Streets
Figure 4-3. 52’ Typical Roadway Section - Collector Streets
Figure 4-4. 64' Four Lane Typical Roadway Section - Collector Streets
Figure 4-5. Typical Roadway Section – With Drainage Swells
The minimum centerline radius of any curve shall be 150 feet, only at speeds of 25 mph or less.

Vertical geometry, passing sight distances and stopping sight distances shall be in accordance with the latest American Association of State Highway and Transportation Officials (AASHTO) *Policy on Geometric Design of Highways and Streets*.

Site triangles on approaches and intersection from a stop condition shall be unobstructed along both directions of the road in accordance with AASHTO *Policy on Geometric Design of Highways and Streets*.

Clear zone distances shall be in accordance with the most recent edition of the AASHTO *Roadside Design Guide*.

Distances from intersections vary depending on the classification of each road (See Table 4-12). Approaches on cul-de-sacs, dead ends and other non-through streets shall be a minimum of 12 feet apart.

Table 4-12. Non-Signalized Access Spacing for Driveways

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Minimum Spacing between Approaches and Intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum Use (Private Driveway)</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td>225</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>175</td>
</tr>
<tr>
<td>Collector</td>
<td>150</td>
</tr>
<tr>
<td>Local</td>
<td>100</td>
</tr>
</tbody>
</table>

All new construction within city limits and impact areas shall be required to follow the Department of Justice document *ADA Standards for Accessible Design* for all publicly accessible areas. This is applicable, but not limited to the construction of public sidewalks, parking facilities and building construction.

Impact Areas

Construction within any designated impact area shall be in accordance with the city standards. The city planning and zoning board shall have the jurisdiction to review any construction plans within designated impact areas.

Drainage

All drainage facilities shall be approved by the city in conjunction with the roadway plans. The design shall be based on current Idaho standards. The appropriate IDEQ BMP’s (Best Management Practices) shall be identified.

The design storm shall be a 10-year, six-hour event. The conveyance of storm water and associated runoff shall include winter and spring runoff needs. Any disruption of the normal drainage pattern of the area to be developed must have special consideration to accommodate future drainage.
Roadway surfaces shall be crowned to slope away from the roadway centerline at a grade of 2 percent.

All necessary drainage easements for accommodating drainage structures shall be shown and recorded on the plans or plat as a part of the approved plans or plat. Drainage easements necessary for draining storm water across private property shall be shown on the plans or plat and recorded with the city by a letter from the applicant describing the areas containing the easements such as lot lines, blocks, etc.

When a curb and gutter roadway section is proposed, a complete storm sewer system must be designed and constructed under the review of a registered professional engineer. Storm water disposal and maintenance of the stormwater disposal system may be the responsibility of the developer or a homeowner’s association.

Pavement Marking and Signing

The developer shall install stop signs, as required by the MUTCD, at all intersections with existing streets. The developer shall also install all other signs required for safe traffic and pedestrian movement in the development. Signs shall be in accordance with the latest edition of the *Manual on Uniform Traffic Control Devices* (MUTCD).

The city shall determine pavement marking requirements subject to MUTCD requirements on a case-by-case basis. Should centerline markings or other pavement markings be required, they shall be constructed by the applicant in accordance with the latest edition of the MUTCD. The spacing, location and width of markings will be determined on a case-by-case basis by the city. Paint quality shall be the same as that used by the Idaho Transportation Department for their pavement markings.

Culverts and Bridges

All culverts and bridges shall be designed by a professional engineer. Bridges and culverts are subject to the stream corridor and floodplain requirements.

All bridges and culverts on natural waterways shall be designed to pass a 100-year flood without damage to the bridge or its approaches, without diverting flood waters onto neighboring properties and without increasing the level of the base flood downstream.

The developer may be required to install a bridge rather than a culvert on any natural waterway where such action is required by the advice of the Idaho Fish and Game Department to protect the fishery.

Culverts not included in this section shall conform to drainage standards.

All culverts and bridges shall be designed to support a minimum gross vehicle load of 40,000 pounds.

There shall be a minimum 50-foot tangent approach to all bridges.
Asset Management

A pavement management inventory will allow the City of St. Anthony to develop geographic information system (GIS) mapping. A traffic sign inventory was also conducted. These elements provide the first step toward completing an overall asset management system for the city.

The following is a summary of completed and recommended asset inventory needs:

Pavement Management

St. Anthony intends to achieve an average of 10 to 12 years of remaining service life for paved roads.

Pavement Management System

Limited financial resources have created an urgent need to manage roadway inventories objectively. A pavement management system helps maintain an accurate inventory of streets, tracks pavement deterioration, diagnoses the cause of deterioration, and evaluates design solutions. The system allows objective determination of strategies for maintaining and, in some instances, even improving and extending the performance life of roadways. By using effective maintenance and rehabilitation methods, city roadways can provide higher levels of service for longer periods of time, resulting in direct, immediate savings to both the city and motoring public.

Preventative Maintenance Work

The cornerstone of pavement management is preventative maintenance. Maintenance treatments are used for several reasons: to seal cracks in the pavement, patch failed sections of asphalt and arrest oxidation aging that embrittles asphalt surfaces. Inspecting each roadway, making timely repairs and resurfacing the pavement can prolong the life of roads.

The key to preventative maintenance is identifying and performing the appropriate work at the appropriate time. Timely action prevents the pavement from advancing to the next, more expensive level of repair. Avoiding the next level of repair minimizes disruptions to roadway users once repairs are eventually performed. Most importantly, timely work is relatively inexpensive, improves the service condition, reduces the deterioration rate, and extends the serviceable life of roadways.

Figure 4-6 shows City of St. Anthony’s remaining service life distribution for paved roads based on the 2005 inventory.
Pavement management includes the following steps:

- Inventorying all road assets
- Assessing roadway conditions at least every three years
- Establishing condition levels for each asset
- Setting the annual budget to maintain each asset at or above the established condition levels

Pavement Inventory and Analysis

As part of the transportation planning process, the city’s paved roads were inventoried and assessed. An average remaining service life (RSL) for the city’s paved roads was determined to be 6.81 years. This average RSL falls well below the target range of 10 to 12 years. This indicates that the city’s paved roads are deteriorating at a rate that exceeds the past maintenance program. Typically, the RSL distribution would form a pyramid, with the highest percentage of roads falling in the 10 to 12 RSL category. The current distribution shows the road network is slipping to the left. This can be the result of inadequate funding and/or implementation of an ineffective maintenance plan. A pavement management plan (a separate document) projects future RSL scenarios based on the available budget and the costs associated with various maintenance strategies. The three strategies presented in the plan are costly. The city will need to review these strategies and determine if one is desired over the others.

The pavement management program will need to be updated with each year’s maintenance activities. These maintenance activities (chip seals, triple chip seals, etc.) should be tracked for each road segment in the asset management software. Any changes to the pavement inventory should be entered in to the program with subsequent analysis conducted to determine the most cost-effective pavement management strategy.
Signs

The city’s 758 road signs were inventoried during development of the transportation plan, including 251 street signs, 124 stop signs, 123 yield signs, 40 speed limit signs and miscellaneous warning, regulatory and other signs.

This inventory and location information was entered into the asset management software. Inclusion of these data will allow the City of St. Anthony to develop maintenance, replacement, and upgrade strategies for signs. To maintain sign conditions and meet mandated sign upgrade requirements, the city should develop an annual sign budget for continual upgrade and replacement of signs.

Culverts

The city’s culverts were inventoried during development of the transportation plan. This inventory and location information was entered into the asset management software. Inclusion of these data will allow the City of St. Anthony to develop maintenance, replacement, and upgrade strategies for culverts and improve planning for road improvement projects by addressing culvert needs.

Sidewalks

City sidewalks were inventoried (Exhibit 4-7) and proposed sidewalks are indicated. Funding for sidewalks may be possible through ITD safety or enhancement grants or a Local Improvement District (LID).
Exhibit 4-7. City of St. Anthony Sidewalk Map
Other Modes and Means of Transportation

Alternatives to motor vehicles whether for cost savings, convenience, recreation or exercise are a growing component of the transportation infrastructure. Exhibit 4-8 depicts the various existing modes and means of transportation in Fremont County and/or St. Anthony. See Section 2 for additional information.

Pathways and Trails

Henry’s Fork Greenway

St. Anthony boasts the beautiful Henry’s Fork Greenway Trail. Currently, it runs along both sides of the river. Future plans include joining the two trails into one with a crossing over the river. The two trailheads are marked with the Henry’s Fork Greenway Project Sign.

In dry conditions, the trail is easily accessible for visitors of all abilities, including those in wheelchairs. (Source: City of St. Anthony Web site [http://ci.saint-anthony.id.us])

Airports

Stanford Field, the city’s airport, serves primarily as an agricultural landing facility. Recent ITD funds will seal coat the taxiway and landing strip and install a visual guide slope (see Exhibit 2-1).

Pilots and lifelong St. Anthony residents, Leland W. "Jinks" and Margaret Stanford, started building the airport shortly after World War II. It was designated as “Stanford Field” during the 1980s in their memory. (Source: http://www.stanthonychamber.com/virtualtour/airport.htm)
Table 4-13. Facility Data about the Stanford Field Airport

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
<td>U12</td>
</tr>
<tr>
<td>Location</td>
<td>1 mile SE of St. Anthony</td>
</tr>
<tr>
<td>Airport use</td>
<td>Open to the public
Aircraft based on the field: 18 (12 single-engine airplanes, 1 helicopter, 5 ultralights)
Aircraft operations: average 61/week
78% transient general aviation, 19% local general aviation, 3% air taxi</td>
</tr>
<tr>
<td>Control</td>
<td>Unattended
No control tower</td>
</tr>
<tr>
<td>Runway</td>
<td>Dimensions: 4,500 by 50 feet
Asphalt surface
Medium-intensity edge lighting
Runway edge markings
No runway end identifier lights</td>
</tr>
<tr>
<td>Parking</td>
<td>Parking tiedowns</td>
</tr>
</tbody>
</table>

Source: http://airnav.com/airport
Exhibit 4-8. Fremont County Transportation Modes...
Project Alternative Analysis

The projects described on the following pages were identified through an extensive public involvement process that included:

- A public open house held in St. Anthony
- Transportation Advisory Committee (TAC) meetings
- A project kick-off meeting with county and city elected officials and department supervisors
- Interviews with St. Anthony police officers, public works supervisor, city clerk, mayor and council members, and emergency medical service personnel
- An engineering review of traffic, accident and pavement condition data by the project engineers

Not all projects that were suggested through this process have been included in these lists. Many of the suggestions pertained to the state highways, particularly US 20. Changes and improvements to state highways are not within the jurisdiction of the City of St. Anthony; therefore, are not included as proposed projects. The suggestions related to the state highways are listed separately and will be forwarded to ITD District 6 for their consideration.

Pair Wise Comparison

The Pair Wise Comparison method of ranking projects through public involvement was used to prioritize projects for Fremont County, the City of Ashton and the City of St. Anthony. This process:

- Compares criteria and develop criteria weights
- Compares projects for each criteria
- Develops weighted values for each project on each criteria
- Sums weighted results for each project

At the third TAC workshop, members selected five criteria from a list of 10 examples that they felt accurately reflected the goals and objectives of the study.

Criteria

- **Cost (Including ROW)**
 Considers the overall cost of the project and the amount of local funds (matching funds) required to complete the project.

- **Safety**
 Evaluates the impact the project will have on overall safety conditions of the targeted project area. Also evaluates potential secondary safety benefits to other areas as a result of its implementation. Safety issues include: roadway width, shoulders, speed and volume of accidents.

- **Local Access and Circulation**
 Evaluates how the project serves the residents and how the project provides
access to appropriate/desired areas of the county/city. Also evaluates whether the project has a negative effect on existing functional roadways.

- **Maintenance**
 Evaluates the associated annual cost of maintaining a completed project for the design life (20 years) of the project.

- **Constructability/Feasibility**
 Evaluates ease of construction and impacts that construction will have on traffic and surrounding infrastructure. Also considers whether the project has a realistic chance of being constructed within the next 20 fiscal years.

Using a list of suggested projects gathered from open house public comment and key-person interviews, TAC members also compiled a list of the top priority transportation projects in the county and cities. This list was added to and refined by a second round of key-person interviews.

TAC members were then sent all the materials to rank the projects utilizing the Pair Wise method, including detailed descriptions of each project with cost estimates. TAC members were randomly assigned a criterion to base their comparison on (five TAC members for each criterion). Those TAC members that had a special relationship with the cities of Ashton and/or St. Anthony were also asked to compare projects in their respective city, for all five criteria.

Figure 4-7 is an example of a completed Fremont County Pair Wise chart.

Figure 4-7. Completed Fremont County Pair Wise Chart

<table>
<thead>
<tr>
<th>Pair Wise Comparison of Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1: Maintainability</td>
</tr>
<tr>
<td>Criterion 2: Safety</td>
</tr>
<tr>
<td>Criterion 3: Constructability</td>
</tr>
<tr>
<td>Criterion 4: Feasibility</td>
</tr>
<tr>
<td>Criterion 5: Cost</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project 1</th>
<th>Project 2</th>
<th>Project 3</th>
<th>Project 4</th>
<th>Project 5</th>
<th>Project 6</th>
<th>Project 7</th>
<th>Project 8</th>
<th>Project 9</th>
<th>Project 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

AUGUST 2006

PREPARED BY J-U-B ENGINEERS, INC.
Attached to this email is everything you will need to quickly and easily complete the Fremont County Pair Wise Project Comparison. Attached to this message are:

- Complete Pair Wise Comparison Excel Spreadsheet (XLS)
- Detailed project descriptions and cost estimates (DOC)

First, open and print the Project Description document. You will refer to this information during the Pair Wise Comparison process.

Next, open the Fremont County spreadsheet. Each TAC member has been randomly assigned one of the five criteria selected at the October workshop to consider when evaluating the projects. Your criterion is described at the top of the spreadsheet.

You must compare projects using the scale in the upper left hand corner of each page.

- There is no need to compare the same project; i.e. Monkey Rock Parking Area vs. Monkey Rock Parking Area. Therefore, where identical projects meet on the spreadsheet, the box has been Blacked Out.

- There is also no need to compare projects twice; the spreadsheet will automatically assign the opposite value to the chart’s reversed comparison, therefore you only need to concern yourself with comparing projects with empty boxes. All others have been Blacked Out.

For example: The first two projects to compare are 1900 E – Widen/Improve from 100 N to 500 N versus Idaho 47 – Widen/Improve from Ashton to Warm River. First, read and understand the evaluation criteria description, then read and understand each detailed project description and ask yourself, “Considering my criteria, is widening and improving 1900 East more important, of equal importance or less important than widening and improving Idaho 47 from Ashton to Warm River?”

Then, type in the corresponding numeric value: 1 for less important, 3 for equal, or 5 for more important. Complete this process for each project comparison, resave the Excel spreadsheet(s) on your computer, and reattach the file on a return message to me.

As mentioned, each of the 25 TAC members was assigned one of five criteria; therefore four other TAC members received the same criteria as you. If we do not received everyone’s completed spreadsheet our results will be unbalanced and skewed, so PLEASE COMPLETE AND RETURN YOUR PAIR WISE COMPARISON BY FEBRUARY 14, 2006.

At the fourth TAC workshop, group members were asked to assign a weighted value for each criterion, in an identical method to the project comparison they had completed earlier (see Figure 4-8).
Figure 4-8. Fremont County Project Ranking Criteria

Project scores within each of the five criteria were then totaled and multiplied by their respective criteria weight. The five weighted scores for each project were summed and the project totals were ranked, resulting in a prioritized list of projects based on TAC input (see Figure 4-9).
This ranking was then shared with the at-large community at a series of public open houses throughout the county.
Projects Identified through the Pair Wise Planning Process

1. Add a 5-foot wide concrete sidewalk along the north side of Yellowstone Highway

2. Improve N. Bridge Street, north of 5th N

3. Add sidewalk to the west side of N. Bridge Street from Old Yellowstone Highway.

4. Add sidewalk to the west side of Old Yellowstone Highway from 6th S. to Salem-Union Canal bridge

5. Add sidewalk to the east side of W. 12th Street, from Main Street to 5th S

6. Add sidewalk to the south side of Main Street from 12th W to 4th W

7. Upgrade and realign intersection of 12th W and Main Street to a “T” intersection

8. Rehabilitate/reconstruct 12th W. north of Main St

9. Add sidewalk to the north side of Main Street from 6th W to 10th W

10. Complete the Greenway Trail

These projects are described in more detail as follows:

1. **Add a 5-foot wide concrete sidewalk along the north side of Old Yellowstone Highway (US 20 Business Loop) from N Bridge Street to Radio Road**

 This is approximately 2,800 feet in length. The estimated cost is $105,000 or $215,000 with curb and gutter.

2. **Improve N Bridge Street, north of 5th N**

 The current roadway has varying widths. The city would like to make N Bridge Street a uniform width from Old Yellowstone Highway to the Canal. The total length is approximately 1,580 feet and the narrowest width is 26 feet. The city would like to add 14 feet to make the pavement 40 feet wide. Some additional rights-of-way will be required.

 The estimated cost is $190,000 including curb, gutter and a 5-foot sidewalk on the east side. (The cost of adding an 8-foot sidewalk to the west side, along the schools is listed below.)

3. **Add sidewalk to the west side of N Bridge Street from Old Yellowstone Highway (US 20 Business Loop) [the intersection by City Hall] to the high school**

 This is approximately 1,415 feet in length and is proposed to be an 8-foot wide concrete sidewalk. Estimated cost is $80,000 or $130,000 with curb and gutter.
4. **Add sidewalk to the west side of Old Yellowstone Highway from 6th S to Salem-Union Canal Bridge, approximately 2,650 feet in length**

 This could be an asphalt pathway, detached from the paved roadway. The canal bridge was recently constructed with an attached pathway separated from the traffic by a guardrail. Estimated cost for the pathway is $95,000.

5. **Add sidewalk to the east side of W 12th Street, from Main Street to 5th S**

 This is approximately 1,600 feet in length, and is proposed to be a 5-foot wide asphalt sidewalk. Estimated cost is $35,000 or $90,000 if curb and gutter is included.

6. **Add sidewalk to the south side of Main Street from 12th W to 4th W**

 This is approximately 1,790 feet in length and is proposed to be a 5-foot wide concrete walkway. Estimated cost is $67,500 or $144,000 if curb and gutter is included.

7. **Upgrade intersection of 12th W and Main Street, which needs to be realigned into a “T” intersection**

 Requires some new pavement, striping and removal of old asphalt. Estimated cost is $150,000.

8. **Rehabilitate/reconstruct 12th W 1220 LF – RSL = 2**

 This portion of 12th W has severe pavement deterioration. The estimated cost to rebuild 12th W is $196,000. A Cement Recycled Asphalt Base Stabilization (CRABS) treatment could be completed for $135,000.

9. **North side of Main Street from 6th W to 10th W**

 This is approximately 1,270 feet in length and is also proposed to be a 5-foot wide concrete sidewalk. Estimated cost is $47,000 or $105,000 if curb and gutter is included.

10. **Complete the Greenway Trail**

 The City would like to complete an estimated 8,800 feet of trail to connect the two existing pathways. This would be a 10-foot wide asphalt pathway. The cost is estimated to be $250,000.
Projects suggested by citizens for highways that are under the jurisdiction of ITD District 6:

The citizens of St. Anthony would like to see the following projects considered by ITD and encourage ITD District 6 to include them in the planning efforts of the District.

✓ **N Bridge Street and E Yellowstone Road**
Place Traffic Signal – $5,000 for warrant study; $120,000 for signal. This intersection is on the US 20 Business Loop. Any studies performed at this intersection will have to be reviewed and approved by ITD.

✓ **N Bridge Street from US 20 IC to 4th N**
Analyze and address intersection and capacity issues. This is also on the US 20 Business Loop and would be an ITD project. Improvements may involve restriping for a center turn lane, additional signal lights and other remedies.

Projects for Future Consideration

The following items were additional suggestions made by the public for the St. Anthony area. These suggestions are not included in the CIP at this time, but are listed here for consideration in future updates to the St. Anthony Transportation Plan.

✓ **US 20 N, St. Anthony/Relay Station exit is dangerous**
✓ **Improve Birch Street**
✓ **Bridge near 12th W is narrow**
✓ **Main Street, 8th E south side, 4th N need curb**
✓ **Canal Bridge west of Bridge Street needs improvements**
✓ **Birch Road-perhaps provide additional egress**
✓ **Lincoln School E 8th S –some congestion**
✓ **NW corner of City – housing growth**
✓ **West 4th N – 30 mph except school zone @ 20mph**
✓ **South 12th W – Narrow, curves near Main Street**
✓ **Need signage by Radio Road and US 20, also east of Broulims to Radio Road**
✓ **Reduce speed limit on Yellowstone and South 12th W**
✓ **West 7th S – Lot of Gravel Trucks**
✓ **Pathways – on south Old Yellowstone Highway to Stoddard Lumber (prefer next to road if asphalt)**
✓ **Need snow machine crossing over river**
✓ **Sidewalks along STC 6803 to school from city limits**
✓ Need sidewalk between Landfill Road and Birch Road
✓ Concern about development east of town along 11th S (Hog Hollow)
✓ Gravel bar west of city – potential growth area
✓ West Main Street could use work
✓ More street signs where no streets are marked between Main and 4th Street, which makes it difficult for EMS to respond to emergencies.
✓ Need left turn lanes at intersections
✓ Need good road southeast of city toward Wilford
✓ Another bridge across the river
✓ Signal at 4th N and Bridge Street
✓ Need another street like West 4th N heading north of town
Introduction

Transportation concerns that need to be met include providing for safe pedestrian walkways, improving several intersections and paving certain streets in the City of St. Anthony. These concerns can be addressed through a combination of improvements and additions to the existing transportation system that focus on sidewalks, capacity and safety issues and roadway upgrades. The City of St. Anthony will continue to maintain existing transportation facilities for the traveling public and sustain local and county economic development.

The following section summarizes the five-year capital improvements that are recommended for the City of St. Anthony transportation system. This list of projects is the culmination of the cooperative and creative effort of City of St. Anthony staff, elected officials and St. Anthony residents who provided excellent comments and solutions for designing a functional transportation system.

Capital Improvements

There are several characteristics of capital improvements:

- They are major projects requiring the expenditure of public funds over and above annual operating expenses for the purchase, construction or replacement of physical assets.
- They include the acquisition or construction of facilities such as roadways, bridges, rights-of-way, airport, library, park, city hall or others.
- They typically have a useful life of over 10 years.

For capital improvements to be implemented, it must be within a city’s financial ability to pay for the proposed projects. The City of St. Anthony has developed the CIP to ensure that funds are budgeted for capital improvements. The CIP does the following:

- Outlines capital expenditures to be incurred each year over a fixed period of years, generally a five-year time period with annual review
- Optimizes the use of taxpayer dollars
- Focuses attention on community needs, goals and capabilities
- Increases opportunities for using various matching fund programs
Capital Improvement Plan Projects

This section describes projects in the 5-year CIP. See Exhibit 4-9 for project locations.

Roadway and Bridge Projects

1 Sidewalk Improvements, north side of Yellowstone Highway

Location
This proposed sidewalk is located on the north side of the Old Yellowstone Highway (US 20 Business Loop) between Bridge Street and Radio Road.

Need—Safety, mobility
The area north of Yellowstone is being developed into a residential area. This sidewalk is needed to provide a safe pedestrian walkway to the school complex on the west side of Bridge Street.

Improvements
Construct a 5-foot wide concrete sidewalk, approximately 2,800 feet in length.

Estimated Cost
✓ $105,000 or $215,000 with curb and gutter. Curb and gutter is optional and will require additional design for stormwater management.

Funding Sources
✓ Enhancement Funds
✓ LHTAC Investment Program
✓ City Roadway Budget

2 Improve N Bridge Street, north of 5th N

Location
This is the northern most portion of Bridge Street, from Old Yellowstone Highway (or US 20 Business Loop) to the canal.

Need—Connectivity, safety, capacity
The current roadway has varying widths. The City would like to make N Bridge Street a uniform width from Old Yellowstone Highway to the Canal. Total length is approximately 1580 feet. Current narrowest width is 26 feet.

Improvements
Widen the road by adding 14 feet to make the pavement 40 feet wide.

Estimated Cost
✓ $190,000 including curb, gutter and 5-foot sidewalk on the east side
3 Sidewalk Improvements, west side of N Bridge Street

Location
This proposed sidewalk is located along the west side of Bridge Street, north of Yellowstone, in front of the schools.

Need—Safety, mobility
This sidewalk is needed to provide a safe pedestrian walkway for students and residents to the schools along Bridge Street.

Improvements
Construct an 8-foot wide concrete sidewalk, approximately 1,415 feet in length. Curb and gutter will require additional design for stormwater management.

Estimated Cost
✔ $80,000 or $130,000 with curb and gutter

Funding Sources
✔ Enhancement Funds
✔ LHTAC Investment Program
✔ City Roadway Budget

4 Sidewalk Improvement - Old Yellowstone Highway from 6th S to Salem-Union Canal bridge

Location
This proposed sidewalk is located along the west side of Old Yellowstone Highway, (south of the river) from 6th S to the Salem-Union Canal Bridge.

Need—Safety, mobility
This pathway would provide a safer route for pedestrians along the old highway through the commercial area.

Improvements
Prepare base and construct a 10-foot wide asphalt sidewalk, approximately 2,650 feet in length.

Estimated Cost
✔ $95,000

Funding Sources
✔ Enhancement Funds
✔ LHTAC Investment Program
✔ City Roadway Budget
5 Sidewalk Improvement - W 12th, from Main Street to 5th Street

Location
This proposed sidewalk is located along the east side of W 12th, from 5th Street north to Main Street.

Need—Safety, mobility
This pathway will provide a safer route for school children and other pedestrians.

Improvements
Construct a 5-foot wide asphalt pathway, approximately 1,600 feet in length. Curb and gutter is optional and will require additional design to manage stormwater.

Estimated Cost
✓ $35,000 for asphalt, $90,000 with curb and gutter

Funding Sources
✓ Enhancement Funds
✓ LHTAC Investment Program
✓ City Roadway Budget

6 Add sidewalk to the south side of Main Street from 12th W to 4th W

Location
This proposed sidewalk is located along the south side of Main Street from 12th W to 4th W.

Need—Connectivity, safety
This pathway will provide a safer route for school children and other pedestrians.

Improvements
Construct a 5-foot wide concrete sidewalk, approximately 1,790 feet in length. Curb and gutter is optional and will require additional design to manage stormwater.

Estimated Cost
✓ $67,500 for sidewalk; $144,000 if curb and gutter is included

Funding Sources
✓ Enhancement Funds
✓ LHTAC Investment Program
✓ City Roadway Budget
7 Upgrade and realign intersection to a “T” intersection

Location
This intersection is on the west side of town at the intersection of 12th W and Main Street.

Need—Roadway Safety
The existing intersection is not designed to current standards and needs to be realigned into a “T” intersection. The existing intersection is not clearly delineated and is potentially hazardous.

Improvements
Remove old asphalt, realign, pave and add striping and signing.

Estimated Cost
✓ $150,000

Funding Sources
✓ LHTAC Investment Program
✓ City Roadway Budget

8 Rehabilitate/reconstruct 12th W

Location
This section of 12th W is between 6th N and Main Street.

Need—Roadway Safety
This portion of 12th W has severe pavement deterioration. The remaining service life is two years.

Improvements
Rebuild the base and pave or utilize a CRABS treatment and overlay.

Estimated Cost
✓ $196,000 to rebuild and pave; or a CRABS treatment could be completed for $135,000

Funding Sources
✓ LHTAC Investment Program
✓ City Roadway Budget

9 Sidewalk Improvements - Main Street from 6th W to 10th W

Location
This proposed sidewalk is on the north side of Main Street from 6th W to 10th W.

Need—Roadway Safety
This sidewalk will complete the sidewalk along Main Street from the ballparks and recreation areas along 12th W and will provide a safer route for school children and other pedestrians.
Improvements
Construct a 5-foot wide concrete sidewalk approximately 1,270 feet in length.

Estimated Cost
✓ $47,000 or $105,000 if curb and gutter is included; curb and gutter will require additional design for stormwater management.

Funding Sources
✓ Enhancement Funds
✓ LHTAC Investment Program
✓ City Roadway Budget

10 Complete the Greenway Trail

Location
The Henry’s Fork Greenway Trail is on the southwest side of St. Anthony along the river. The southern route of the existing pathway runs along the south bank of the Henry’s Fork River from Bridge Street west, approximately one mile. The proposed pathway would continue west to the old railroad bridge, cross the river and follow along the north bank to connect to the existing pathway on the north side of the river that leads to Parker Road.

Need—Safety, Recreation
This pathway would create an attractive loop for recreation and exercise for the residents of St. Anthony and visitors.

Improvements
The city would like to complete an estimated 8,800 feet of trail to connect the two existing pathways. This is proposed to be a 10-foot wide asphalt pathway.

Estimated Cost
✓ $250,000

Funding Sources
✓ Enhancement Funds
✓ LHTAC Investment Program
✓ City Roadway Budget
Exhibit 4-9. CIP Projects
State/Local Funding

The major source of state funds for all road and street jurisdictions (state, county, highway district and city) is the Highway Distribution Account (HDA). Funds deposited into the account are collected from a number of sources and distributed according to Idaho law.

Revenue from the HDA for the maintenance, repair and construction of Idaho’s 5,000-mile state highway system is deposited into the state highway account for ITD use.

ITD receives approximately 56 percent of the HDA revenue.

The remaining amount is divided among cities, counties and highway districts and the Idaho State Police.

Funding Sources for the HDA

✓ **Gasoline and special fuels tax**
 These taxes are collected by the Idaho Tax Commission and deposited into the HDA. Idaho’s state fuel tax is 25 cents per gallon. Taxes on special fuels, such as diesel and propane, are also deposited into the HDA.

✓ **Vehicle registrations**
 Another major source of revenue to the HDA is vehicle registrations. The registration fee for passenger cars is based on the age of the vehicle.

✓ **Truck registrations**
 Trucks weighing 8,000 to 60,000 pounds gross vehicle weight pay registration based on weight group and type of operation.

✓ **Miscellaneous fees**
 Other HDA fees are derived from license plate fees (including personalized and specialty plates), driver licenses and fines.

Local Federal-aid Incentive Program

This funding is allocated to local jurisdictions by the LHTAC through a competitive application process that is reviewed each year.

Local rural funds are allocated for projects in rural areas and cities with populations below 5,000.

Funds may be used for new construction, reconstruction, or rehabilitation of roadways functionally classified by the Federal Highway Administration as rural major collectors or higher, with a small percentage allowed for minor collectors.
Surface Transportation Program (STP) funds can also be used for activities such as transportation planning, corridor studies and purchase of minimally corrosive anti-icing material. These funds may also be used for enhancement, bridge, or safety activities.

The local match requirement is 7.34 percent.

Congestion Mitigation and Air Quality (CMAQ) Improvement Program

Funds are available to implement cost-effective activities, plans and projects that are mutually beneficial to transportation and air quality.

There are two categories of projects:

- **Construction**
 - Road surfacing, bicycle and pedestrian route construction, traffic flow improvements and inter-modal facilities.

- **Non-construction**
 - Dust control and prevention; transit; alternative fuels conversions; traffic flow and Intelligent Transportation Systems studies; and alternative transportation education, promotion and outreach efforts.

The local match requirement is 7.43 percent of total project cost.

Enhancement Program

The following transportation enhancement activities are eligible for funding under this program:

- Provision of facilities for pedestrians and bicycles
- Provision of safety and educational activities for pedestrians and bicycles
- Acquisition of scenic easement and scenic or historic sites
- Scenic or historic highway programs, including provision of tourist or welcome centers
- Landscaping and other scenic beautification
- Historic preservation
- Rehabilitation and operation of historic transportation buildings, structures, or facilities
- Preservation of abandoned railway corridors
- Control and removal of outdoor advertising
- Archaeological planning
- Mitigation of water pollution due to highway runoff
- Mitigation of wildlife mortality caused by vehicles
Establishment of transportation museums

Enhancement funding is generally very competitive due to the limited funding available and large number of applications submitted each year.

Federal aid enhancement funds have a limit of $500,000 per project.

Projects require a local match of between 2 percent and 10 percent, depending on the amount requested.

Public Lands Highways Program

Public Lands Highways (PLH) discretionary funds are available for any kind of transportation project eligible for assistance under Title 23 of United States Code that is within, is adjacent to, or provides access to the areas served by a public lands highway.

These highways may be state highways, local roads or federal agency roads.

There is no required state or local match on PLH discretionary funds.

In the past two years, much of the funding available under this discretionary program has been earmarked by Congress, leaving less funding available to projects submitted in the traditional manner.

Highway Safety Program

Funds are for projects that reduce accidents at identified hazardous locations, make bicycle and pedestrian safety improvements (including on-road facilities, public trails and traffic calming activities) or improve motorist protection at railroad crossings.

These funds are available for any state or local public road.

The local or state match requirement is 7.34 percent.

Scenic Byways Program

The project must be on a highway or local road designated as a scenic, historic, or backcountry byway.

Eligible projects include development and implementation of corridor management plans, safety improvements as a result of designation, pedestrian/bicycle facilities, turnouts, shoulder improvements and interpretive and tourist information facilities.

The local match requirement is 20 percent.